Add like
Add dislike
Add to saved papers

Hypoxia-inhibited DUSP2 expression promotes IL-6/STAT3 signaling in endometriosis.

PROBLEM: How does hypoxia-mediated downregulation of dual-specificity phosphatase-2 (DUSP2) promote the development of endometriotic lesions?

METHOD OF STUDY: The levels of IL-6 and DUSP2 were assessed in eutopic stromal cells with DUSP2 knockdown or hypoxia treatment. Bromodeoxyuridine (BrdU) incorporation was applied for evaluating cell proliferation. The protein levels of DUSP2, cleaved caspase-3, phosphorylated STAT3, and STAT3 were analyzed using immunoblot.

RESULTS: The genomewide analysis of cells with DUSP2 overexpression indicated IL-6 regulates multiple pathways related to inflammation, proliferation, and apoptosis. DUSP2 overexpression significantly suppressed IL-6 expression, while DUSP2 knockdown promoted IL-6 expression. The hypoxia-treated eutopic stromal cells expressed higher levels of IL-6, recapitulating the elevated levels of IL-6 in ectopic stromal cells. The treatment with IL-6 elicited the phosphorylation of STAT3, mimicking the elevated levels of phosphorylated STAT3 in the ectopic stromal cells. The IL-6-treated eutopic stromal cells showed more BrdU incorporation and less cleaved caspase-3, which can be reversed by STAT3 inhibitor.

CONCLUSION: Hypoxia-induced IL-6 production in endometriotic lesions is mediated via downregulation of DUSP2, which causes aberrant activation of STAT3 signaling pathway and helps the endometriotic cells survive under the ectopic environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app