Add like
Add dislike
Add to saved papers

Association between high mobility group box‑1 protein expression and cell death in acute pancreatitis.

The present study used caerulein stimulation of AR42J rat pancreatic cells as an in vitro acute pancreatitis (AP) model to investigate proteins differentially expressed in apoptosis and necrosis. AR42J cells were stimulated with 10‑8mol/l caerulein and incubated for 24 h. Apoptosis and necrosis were detected using flow cytometry. The sorted Annexin V‑positive cells (apoptotic) and the Annexin V/propidium iodide double‑positive cells (necrotic) were analysed using proteomics. Results showed that numerous proteins were differentially expressed in these 2 groups. Functional enrichment analysis was performed on the differentially expressed genes using the Database for Annotation, Visualization and Integrated Discovery. High mobility group box‑1 protein (HMGB1) was specifically expressed in the necrosis group. Models of varying degrees of AP were established using caerulein at concentrations of 10‑9, 10‑8, 10‑7, 10‑6 and 10‑5 mol/l. The percentage of apoptotic and necrotic cells in each group was determined using flow cytometry. Protein expression levels of HMGB1 were detected by western blot analysis. The present study showed that as the concentration of caerulein increased, the percentage of necrotic cells and the protein expression levels of HMGB1 increased. HMGB1 is involved in many biological processes, including the chromosomal protein glycyl lysine isopeptide cross‑link. HMGB1 may be involved in the early stage of pancreatitis, potentially by inducing the development of cell death by necrosis. These results provide an experimental basis for clinical intervention in AP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app