Add like
Add dislike
Add to saved papers

Mitochondria targeting and near-infrared fluorescence imaging of a novel heptamethine cyanine anticancer agent.

The future of personalized cancer treatments relies on the development of functional agents that have tumor-targeted anticancer activities and can be detected in tumors using imaging. However, application of these functional agents in the clinic has been limited due to inefficient drug delivery, low specificity for tumor imaging, development of drug resistance, low signal-to-noise ratio and safety concerns regarding potential toxicity. Currently, the most common strategy to develop these functional agents is to conjugate therapeutic agents with the appropriate fluorescent probe. The present study synthesized a novel mitochondria-targeted heptamethine cyanine (Cy) derivative Cy‑triphenylphosphonium. The newly developed compound exhibited stronger near infrared (NIR) fluorescence and reacted with bovine serum albumin. In addition, it preferentially accumulated in the mitochondria of cancer cells, as observed using confocal microscopy, and efficiently reduced cancer cell viability (IC50=3.04 µM). This novel multifunctional heptamethine Cy derivative, with cancer mitochondria targeting and NIR fluorescence imaging, may be promising as an alternative anticancer agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app