CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Two novel mutations in ERCC6 cause Cockayne syndrome B in a Chinese family.

Cockayne syndrome (CS) is a rare autosomal recessive disorder characterized principally by progressive growth failure, neurologic abnormality and premature aging. Mutations of excision repair cross‑complementation group 6 (ERCC6) and ERCC8 are predominantly responsible for CS, of which mutation of ERCC6 accounts for approximately two thirds of cases. The current report describes two siblings with severe neurologic abnormality and premature aging. Whole exome sequencing identified two novel mutations in ERCC6 that had not been previously reported. One was a nonsense mutation at codon 612 in exon 9 (c.1834C>T, p.Arg612Ter), and the other a missense mutation at codon 975 in exon 16 (c.2923C>T, p.Arg975Trp). Cosegregation analysis revealed c.1834C>T was paternal and c.2923C>T was maternal. A healthy baby with no mutated alleles was delivered based on prenatal diagnosis performed by genetic testing of amniocytes for the causative mutation. The present study will enrich the clinical and genetic spectrum of CS in China and world wide, and provides more evidence for future genotype‑phenotype studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app