Add like
Add dislike
Add to saved papers

Sorption of Nickel(II) on a Calcareous Aridisol Soil, China: Batch, XPS, and EXAFS Spectroscopic Investigations.

Scientific Reports 2017 April 26
The sorption of Ni(II) on a calcareous aridisol (CA) soil, one of the major soil types in northwestern China, was investigated using batch and extended X-ray absorption fine structure (EXAFS) approaches in a 0.01 mol/L NaClO4 solution at different pH values (6.0-10.0), temperatures (25-60 °C) and contact times (2-15 days). Under alkaline conditions, EXAFS analysis showed that the interatomic distances between Ni and O atoms (RNi-O) were approximately 2.04 Å with a typical coordination number (CN) of ~6.0 O atoms in the contact time range from 2 to 15 days. The RNi-Ni (~3.07 Å) suggested that the structure of the Ni(II) adsorbed on the CA soil was basically the same as that of Ni(OH)2(s), while the Ni-Al shell (RNi-Al ~3.16 Å) gradually formed and grew with the increasing contact time. Under weakly acidic conditions, the sorption mechanism of Ni(II) on the CA soil possibly included at least two processes: (i) a fast accumulation dominated by ion exchange and surface complexation and (ii) the formation of a Ni-Al LDH phase over the long term. A high temperature is beneficial to the fixation of Ni(II) on the CA soil and the formation of a Ni-Al LDH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app