JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synthetic Route Development for the Laboratory Preparation of Eupalinilide E.

Following the discovery that the guaianolide natural product eupalinilide E promotes the expansion of hematopoietic stem and progenitor cells; the development of a synthetic route to provide laboratory access to the natural product became a priority. Exploration of multiple synthetic routes yielded an approach that has permitted a scalable synthesis of the natural product. Two routes that failed to access eupalinilide E were triaged either as a result of providing an incorrect diastereomer or due to lack of synthetic efficiency. The successful strategy relied on late-stage allylic oxidations at two separate positions of the molecule, which significantly increased the breadth of reactions that could be used to this point. Subsequent to C-H bond oxidation, adaptations of existing chemical transformations were required to permit chemoselective reduction and oxidation reactions. These transformations included a modified Luche reduction and a selective homoallylic alcohol epoxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app