Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus.

Plants are sessile organisms that can tune their body architecture to the environment. This is very pronounced in their root system. In particular, nutrient availability strongly influences the architecture of the root system; depending on the abundance of specific nutrients, root growth rates and lateral root number are modulated. The extent of these effects is important for plant adaptation and has a major impact on plant fitness. However, the assessment of quantitative effects on a scale large enough for identifying genes and variants using quantitative genetics is difficult, and well-developed methods have been largely restricted to the model species Arabidopsis thaliana. In this chapter, we present a protocol for high-throughput phenotyping of early root traits in the model legume plant Lotus japonicus. This species allows for the study of important root-associated traits that are not present in Arabidopsis, such as symbioses with nitrogen-fixing Rhizobia and arbuscular mycorrhizal fungi. The methods described in this chapter can be used in the context of reverse and forward genetics approaches to dissect the genetic basis of root growth in legumes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app