Add like
Add dislike
Add to saved papers

CKS1BP7, a Pseudogene of CKS1B, is Co-Amplified with IGF1R in Breast Cancers.

Pseudogenes have been reported to exhibit functional roles. Amplification or overexpression of CDC28 protein kinase regulatory subunit 1B (CKS1B) was found in various human cancers. But it was known little about CKS1B pseudogene 7 (CKS1BP7), a pseudogene sharing considerable sequence identity with CKS1B. The aim of this study was to evaluate copy number alterations (CNAs) of CKS1BP7 and address its potential roles in breast cancer. We detected copy numbers of CKS1BP7 and insulin-like growth factor 1 receptor (IGF1R) using quantitative multi-gene fluorescence in situ hybridization (QM-FISH) technique, compared their status in both invasive carcinoma and ductal carcinoma in situ (DCIS) components within the same tumors, and investigated the associations of CNAs with tumor features and patients outcomes. Amplification of CKS1BP7 (dot-like pattern) was found in 28.8% of all cases, while amplified IGF1R (cluster pattern) was identified in 24.2% of all patients. The two events often co-existed (p = 0.01). Within the same tumors, identical CNAs of CKS1BP7 and IGF1R were found in DCIS and invasive carcinoma. Moreover, amplification of both genes was more frequent in aneuploidy tumors and the tumors with high ki67, but wasn't associated with patients' outcome. In summary, CKS1BP7 amplification is a frequent event in breast cancer and often co-occurs with amplified IGF1R, which provides evidence supporting the interactions between CKS1BP7 and IGF1R during mammary carcinogenesis. Our findings suggest that CKS1BP7 as well as IGF1R may serve as potential biomarkers for early detection and predict prognosis in breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app