COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

A rat hysteropexy model for evaluating adhesion formation and comparison of two different structured meshes.

INTRODUCTION AND HYPOTHESIS: Peritonization of mesh during sacrohysteropexy is generally advocated to prevent adhesions to the viscera; however, randomized clinical trials are lacking, and peritonization may not be completely possible in a laparoscopic hysteropexy procedure. Our main objective was to describe a basic experimental rat sacrohysteropexy model. We hypothesized that even when peritoneal closure was omitted, using composite mesh would result in less adhesions to the viscera.

METHODS: Twenty in-bred female virgin Wistar Hannover rats were used in this study. Standardized hysteropexy procedure and adhesion model is described step by step with two different mesh materials: polypropylene and a composite polyester. Mesh was anchored between the posterior cervix and anterior longitudinal ligament of the lumbar vertebrae. Macroscopic adhesion scores and histopathological tissue reaction was investigated.

RESULTS: Macroscopically, the surface area involved in adhesions was similar between groups. However, adhesions in the polypropylene group were more dense, required sharp dissection for lysis, and yielded higher total macroscopic adhesion scores (p < 0.001). Histologically, a more pronounced host inflammatory response was encountered in the polyester group (p < 0.001).

CONCLUSIONS: We describe a rat hysteropexy model and a previously established uterine adhesion model. Adhesion scores in the composite mesh group were lower, and bowel involvement was not seen. Our findings are promising, and further research investigating antiadhesive composite mesh use for hysterosacropexy would be appropriate, especially when peritoneal closure is omitted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app