Add like
Add dislike
Add to saved papers

Tsallis entropy and sparse reconstructive dictionary learning for exudate detection in diabetic retinopathy.

Computer-assisted automated exudate detection is crucial for large-scale screening of diabetic retinopathy (DR). The motivation of this work is robust and accurate detection of low contrast and isolated hard exudates using fundus imaging. Gabor filtering is first performed to enhance exudate visibility followed by Tsallis entropy thresholding. The obtained candidate exudate pixel map is useful for further removal of falsely detected candidates using sparse-based dictionary learning and classification. Two reconstructive dictionaries are learnt using the intensity, gradient, local energy, and transform domain features extracted from exudate and background patches of the training fundus images. Then, a sparse representation-based classifier separates the true exudate pixels from false positives using least reconstruction error. The proposed method is evaluated on the publicly available e-ophtha EX and standard DR database calibration level 1 (DIARETDB1) databases and high exudate detection performance is achieved. In the e-ophtha EX database, mean sensitivity of 85.80% and positive predictive value of 57.93% are found. For the DIARETDB1 database, an area under the curve of 0.954 is obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app