Add like
Add dislike
Add to saved papers

Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning.

So-called CO2 flux partitioning algorithms are widely used to partition the net ecosystem CO2 exchange into the two component fluxes, gross primary productivity and ecosystem respiration. Common CO2 flux partitioning algorithms conceptualize ecosystem respiration to originate from a single source, requiring the choice of a corresponding driving temperature. Using a conceptual dual-source respiration model, consisting of an above- and a below-ground respiration source each driven by a corresponding temperature, we demonstrate that the typical phase shift between air and soil temperature gives rise to a hysteresis relationship between ecosystem respiration and temperature. The hysteresis proceeds in a clockwise fashion if soil temperature is used to drive ecosystem respiration, while a counter-clockwise response is observed when ecosystem respiration is related to air temperature. As a consequence, nighttime ecosystem respiration is smaller than daytime ecosystem respiration when referenced to soil temperature, while the reverse is true for air temperature. We confirm these qualitative modelling results using measurements of day and night ecosystem respiration made with opaque chambers in a short-statured mountain grassland. Inferring daytime from nighttime ecosystem respiration or vice versa, as attempted by CO2 flux partitioning algorithms, using a single-source respiration model is thus an oversimplification resulting in biased estimates of ecosystem respiration. We discuss the likely magnitude of the bias, options for minimizing it and conclude by emphasizing that the systematic uncertainty of gross primary productivity and ecosystem respiration inferred through CO2 flux partitioning needs to be better quantified and reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app