Add like
Add dislike
Add to saved papers

Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI.

PURPOSE: Kinetic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) were suggested as a possible instrument for multi-parametric lesion characterization, but have not found their way into clinical practice yet due to inconsistent results. The quantification is heavily influenced by the definition of an appropriate arterial input functions (AIF). Regarding brain tumor DCE-MRI, there are currently several co-existing methods to determine the AIF frequently including different brain vessels as sources. This study quantitatively and qualitatively analyzes the impact of AIF source selection on kinetic parameters derived from commonly selected AIF source vessels compared to a population-based AIF model.

MATERIAL AND METHODS: 74 patients with brain lesions underwent 3D DCE-MRI. Kinetic parameters [transfer constants of contrast agent efflux and reflux Ktrans and kep and, their ratio, ve, that is used to measure extravascular-extracellular volume fraction and plasma volume fraction vp ] were determined using extended Tofts model in 821 ROI from 4 AIF sources [the internal carotid artery (ICA), the closest artery to the lesion, the superior sagittal sinus (SSS), the population-based Parker model]. The effect of AIF source alteration on kinetic parameters was evaluated by tissue type selective intra-class correlation (ICC) and capacity to differentiate gliomas by WHO grade [area under the curve analysis (AUC)].

RESULTS: Arterial AIF more often led to implausible ve >100% values (p<0.0001). AIF source alteration rendered different absolute kinetic parameters (p<0.0001), except for kep . ICC between kinetic parameters of different AIF sources and tissues were variable (0.08-0.87) and only consistent >0.5 between arterial AIF derived kinetic parameters. Differentiation between WHO III and II glioma was exclusively possible with vp derived from an AIF in the SSS (p=0.03; AUC 0.74).

CONCLUSION: The AIF source has a significant impact on absolute kinetic parameters in DCE-MRI, which limits the comparability of kinetic parameters derived from different AIF sources. The effect is also tissue-dependent. The SSS appears to be the best choice for AIF source vessel selection in brain tumor DCE-MRI as it exclusively allowed for WHO grades II/III and III/IV glioma distinction (by vp ) and showed the least number of implausible ve values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app