Add like
Add dislike
Add to saved papers

Effect of anisotropic electron momentum distribution of surface plasmon on internal photoemission of a Schottky hot carrier device.

Optics Express 2017 April 18
We recently reported that an Au/TiO<sub>2</sub> photonic crystal device for photochemical energy conversion showed a sub-bandgap photoresponse centered at the surface plasmon polariton (SPP) resonant wavelength of this device. Here we developed a theoretical modeling of the internal photoemission in this device by incorporating the effects of anisotropic hot electron momentum distribution caused by SPP. The influences of interband and intraband transition, anisotropic momentum distribution of hot electrons by SPP are integrated to model the internal quantum efficiency (IQE) of this device. Near resonant wavelength, SPP dominates the electric field in the thin Au layer, which generates hot electrons with high enough momentum preferentially normal to the Schottky interface. Compared with the widely used Fowler's theory of internal photoemission, our model better predicts hot electron collection in Schottky devices. This model will provide a design guidance for tuning and enhancing photoresponse of Schottky hot carrier devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app