JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Experimental Demonstration of Feature Extraction and Dimensionality Reduction Using Memristor Networks.

Nano Letters 2017 May 11
Memristors have been considered as a leading candidate for a number of critical applications ranging from nonvolatile memory to non-Von Neumann computing systems. Feature extraction, which aims to transform input data from a high-dimensional space to a space with fewer dimensions, is an important technique widely used in machine learning and pattern recognition applications. Here, we experimentally demonstrate that memristor arrays can be used to perform principal component analysis, one of the most commonly used feature extraction techniques, through online, unsupervised learning. Using Sanger's rule, that is, the generalized Hebbian algorithm, the principal components were obtained as the memristor conductances in the network after training. The network was then used to analyze sensory data from a standard breast cancer screening database with high classification success rate (97.1%).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app