Add like
Add dislike
Add to saved papers

Aqueously Released Graphene Oxide Embedded in Epoxy Resin Exhibits Different Characteristics and Phytotoxicity of Chlorella vulgaris from the Pristine Form.

The environmental release of nanoparticles is attracting increasing attention. Graphene oxide (GO) embedded in epoxy resin (ER) is a popular composite that has been used in various fields, but the environmental release of GO-ER composites and the effects on organisms in the environment remain unknown. The present work found that GO-ER composites in water for 2-7 days resulted in the release of 0.3-2.1% GO-ER at nanoscale (2-3 nm thickness and approximately 70-130 nm lateral length). Interestingly, pristine GO quenched 30-45% hydroxyl and 12% nitroxide free radicals, whereas this capacity was not observed for the released particles from GO-ER. At environmentally relevant concentrations (μg/L), released GO-ER particles, but not GO or ER matrix, promoted algal reproduction by 34% and chlorophyll biosynthesis by 65-127% at 96 h. Released GO-ER entered algal cells and induced a slight increase in reactive oxygen species but did not elicit notable cell structure damage. The upregulated amino acids and phenylalanine metabolism, and the downregulated fatty acid biosynthesis contributed to algal growth promoted by released GO-ER. Previous studies of pristine nanoparticles were unable to reflect the environmental effects of released nanoparticles into the environment, and our research on the exposure-toxicological continuum adds important contributions to this field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app