COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Single Disulfide-Directed β-Hairpin Fold. Dynamics, Stability, and Engineering.

Biochemistry 2017 May 17
Grafting bioactive peptide sequences onto small cysteine-rich scaffolds is a promising strategy for enhancing their stability and value as novel peptide-based therapeutics. However, correctly folded disulfide-rich peptides can be challenging to produce by either recombinant or synthetic means. The single disulfide-directed β-hairpin (SDH) fold, first observed in contryphan-Vc1, provides a potential alternative to complex disulfide-rich scaffolds. We have undertaken recombinant production of full-length contryphan-Vc1 (rCon-Vc1[Z1Q]) and a truncated analogue (rCon-Vc11-22 [Z1Q]), analyzed the backbone dynamics of rCon-Vc1[Z1Q], and probed the conformational and proteolytic stability of these peptides to evaluate the potential of contryphan-Vc1 as a molecular scaffold. Backbone15 N relaxation measurements for rCon-Vc1[Z1Q] indicate that the N-terminal domain of the peptide is ordered up to Thr19, whereas the remainder of the C-terminal region is highly flexible. The solution structure of truncated rCon-Vc11-22 [Z1Q] was similar to that of the full-length peptide, indicating that the flexible C-terminus does not have any effect on the structured domain of the peptide. Contryphan-Vc1 exhibited excellent proteolytic stability against trypsin and chymotrypsin but was susceptible to pepsin digestion. We have investigated whether contryphan-Vc1 can accept a bioactive epitope while maintaining the structure of the peptide by introducing peptide sequences based on the DINNN motif of inducible nitric oxide synthase. We show that sCon-Vc11-22 [NNN12-14 ] binds to the iNOS-binding protein SPSB2 with an affinity of 1.3 μM while maintaining the SDH fold. This study serves as a starting point in utilizing the SDH fold as a peptide scaffold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app