Add like
Add dislike
Add to saved papers

Nano/micro-hierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery.

Nano/micro-hierarchical-structured LiMn0.85Fe0.15PO4/C cathode materials were prepared by solvothermal synthesis combined with spray pyrolysis. XRD patterns and HRTEM images indicate that the LiMn0.85Fe0.15PO4/C are well crystallized and no impurity is observed. The as-prepared LiMn0.85Fe0.15PO4/C porous spherical (0.5-11 m) are accumulated by primary nanoparticles (~50 nm in width, 50-250 m in length). Adopting the sucrose as a carbon source, the cathode delivers a reversible discharge capacity of 171.2 mAh g-1 at 0.1C, almost exactly its theoretical capacity (~170 mAh g-1). Moreover, the composite exhibits high cycle stability without apparent capacity fading after 100 cycles at rates of 0.1C and 1C. The outstanding electrochemical performances are partially due to Fe2+ substituting and carbon coating which improve the electrical conductivity, and importantly due to its nano/micro-hierarchical structure, where primary nanoparticles exhibit high electrochemical activity, abundant mesopores benefit electrolyte penetration and hierarchical structure ensure the cycling stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app