Add like
Add dislike
Add to saved papers

Sampled-Data Fuzzy Control for Nonlinear Coupled Parabolic PDE-ODE Systems.

In this paper, a sampled-data fuzzy control problem is addressed for a class of nonlinear coupled systems, which are described by a parabolic partial differential equation (PDE) and an ordinary differential equation (ODE). Initially, the nonlinear coupled system is accurately represented by the Takagi-Sugeno (T-S) fuzzy coupled parabolic PDE-ODE model. Then, based on the T-S fuzzy model, a novel time-dependent Lyapunov functional is used to design a sampled-data fuzzy controller such that the closed-loop coupled system is exponentially stable, where the sampled-data fuzzy controller consists of the ODE state feedback and the PDE static output feedback under spatially averaged measurements. The stabilization condition is presented in terms of a set of linear matrix inequalities. Finally, simulation results on the control of a hypersonic rocket car are given to illustrate the effectiveness of the proposed design method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app