Add like
Add dislike
Add to saved papers

Online Learning Algorithms Can Converge Comparably Fast as Batch Learning.

Online learning algorithms in a reproducing kernel Hilbert space associated with convex loss functions are studied. We show that in terms of the expected excess generalization error, they can converge comparably fast as corresponding kernel-based batch learning algorithms. Under mild conditions on loss functions and approximation errors, fast learning rates and finite sample upper bounds are established using polynomially decreasing step-size sequences. For some commonly used loss functions for classification, such as the logistic and the -norm hinge loss functions with , the learning rates are the same as those for Tikhonov regularization and can be of order , which are nearly optimal up to a logarithmic factor. Our novelty lies in a sharp estimate for the expected values of norms of the learning sequence (or an inductive argument to uniformly bound the expected risks of the learning sequence in expectation) and a refined error decomposition for online learning algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app