Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization.

Water Research 2017 August 2
Fully understanding the metabolism of SRB provides fundamental guidelines for allowing the microorganisms to provide more beneficial services in water treatment and resource recovery. The electron-transfer pathway of sulfate respiration by Desulfovibrio vulgaris is well studied, but still partly unresolved. Here we provide deeper insight by comprehensively monitoring metabolite changes during D. vulgaris metabolism with two electron donors, lactate and pyruvate, in presence or absence of citrate-chelated soluble FeIII as an additional competing electron acceptor. H2 was produced from lactate oxidation to pyruvate, but pyruvate oxidation produced mostly formate. Accumulation of lactate-originated H2 during lag phases inhibited pyruvate transformation to acetate. Sulfate reduction was initiated by lactate-originated H2 , but MQ-mediated e- flow initiated sulfate reduction without delay when pyruvate was the donor. When H2 -induced electron flow gave priority to FeIII reduction over sulfate reduction, the long lag phase before sulfate reduction shortened the time for iron-sulfide crystallite growth and led to smaller mackinawite (Fe1+x S) nanocrystallites. Synthesizing all the results, we propose that electron flow from lactate or pyruvate towards SO4 2- reduction to H2 S are through at least three routes that are regulated by the e- donor (lactate or pyruvate) and the presence or absence of another e- acceptor (FeIII here). These routes are not competing, but complementary: e.g., H2 or formate production and oxidation were necessary for sulfite and disulfide/trisulfide reduction to sulfide. Our study suggests that the e- donor provides a practical tool to regulate and optimize SRB-predominant bioremediation systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app