JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Degradation of nitro-based pharmaceuticals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential.

Water Research 2017 August 2
This study investigated the degradation kinetics and halonitromethanes formation potential (HNMsFP) of two nitro-based pharmaceuticals (i.e., ranitidine (RNTD) and nizatidine (NZTD)) during ultraviolet (UV) photolysis. It was found that the degradation kinetics of RNTD and NZTD exhibited pH-dependent trends, in accordance with their deprotonation equilibria. The neutral species of RNTD and NZTD were more photo-reactive than their corresponding deprotonated species, with their specific fluence-based first-order rate constants varying in the range of 5.64-31.90 m2  E-1 . Both the RNTD and NZTD were prone precursors of HNMs (with molar yields of 5.6± 0.3% and 4.7± 0.4%, respectively at pH 7.0). Acidic and neutral circumstances facilitated the HNMs formation. The UV photolysis of RNTD and NZTD could reduce their HNMsFP simultaneously. Positive linear relationships between residual RNTD or NZTD concentration and HNMsFP were observed and the denitration during the UV photolysis accounted for the HNMsFP reduction. With the mandatory UV disinfection fluences in China (i.e. 20-80 mJ cm-2 ), the effective abatement of RNTD and NZTD and their HNMsFP could not be fully achieved, highlighting the necessity of increasing UV fluence or developing UV-based advanced oxidation process in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app