Add like
Add dislike
Add to saved papers

Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode.

The practical application of lithium-sulfur batteries (LSBs) is hindered by their poor cycle life, which stems mainly from the "redox shuttle reactions" of dissolved polysulfides. To develop a high-performance cathode for LSBs, encapsulation of polysulfides with a blocking layer is potentially straightforward. Herein, a novel strategy is reported encapsulate sulfur and the electrolyte together in porous carbon spheres by using a solid electrolyte interface (SEI) that can selectively sieve Li+ ions while efficiently avoiding polysulfide accumulation and suppressing undesired polysulfide migration. This strategy is simple, straightforward, and effective. The carbon/sulfur cathode only needs to be cycled a few times within a voltage window of 0.3-1.0 V to form such a smart SEI, allowing the resulting cathode to exhibit superior stability extending 600 cycles. This strategy can be combined with other existing advanced sulfur cathode designs to improve the overall performance of LSBs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app