Add like
Add dislike
Add to saved papers

High-Performance Respiration-Based Biocell Using Artificial Nanochannel Regulation.

Based on electron and proton transfer events occurring in biological respiration, a mitochondria-based biocell is constructed by combining with artificial nanochannels. In this biocell, mitochondria transfer electrons to the working electrode and pump protons into the electrolyte through the tricarboxylic acid cycle. The nanochannels provide passages for protons to transport along the transmembrane concentration gradient to consume electrons on the counter electrode, forming a continuous and stable current. Furthermore, the proton transmembrane transport behavior could be modulated by regulating the permeability area and surface charge of nanochannels. A high-performance biocell is obtained when equipped with the optimized nanochannels, which produces a current of ≈3.1 mA cm-2 , a maximum power of ≈0.91 mW cm-2 , and a lifetime over 60 h. This respiratory-based biocell shows great potential for the efficient utilization of bioelectricity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app