Add like
Add dislike
Add to saved papers

Kinetics of CO 2 diffusion in human carbonic anhydrase: a study using molecular dynamics simulations and the Markov-state model.

Molecular dynamics (MD) simulations, in combination with the Markov-state model (MSM), were applied to probe CO2 diffusion from an aqueous solution into the active site of human carbonic anhydrase II (hCA-II), an enzyme useful for enhanced CO2 capture and utilization. The diffusion process in the hydrophobic pocket of hCA-II was illustrated in terms of a two-dimensional free-energy landscape. We found that CO2 diffusion in hCA-II is a rate-limiting step in the CO2 diffusion-binding-reaction process. The equilibrium distribution of CO2 shows its preferential accumulation within a hydrophobic domain in the protein core region. An analysis of the committors and reactive fluxes indicates that the main pathway for CO2 diffusion into the active site of hCA-II is through a binding pocket where residue Gln136 contributes to the maximal flux. The simulation results offer a new perspective on the CO2 hydration kinetics and useful insights toward the development of novel biochemical processes for more efficient CO2 sequestration and utilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app