Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis.

Angiogenesis is a crucial process occurring under physiological and pathological conditions, including cancer. The development of blood vessels is tightly regulated by a plethora of cytokines, endothelial cell (EC) receptors and extracellular matrix (ECM) components. In this context, we have shown that Multimerin 2 (MMRN2), an ECM molecule specifically secreted by ECs, exerts angiostatic functions by binding VEGFA and other pro-angiogenic cytokines. Here, we demonstrate that during angiogenic stimuli MMRN2 mRNA levels significantly decrease. Furthermore, we provide evidence that MMRN2 is processed by matrix metalloproteinases (MMPs) including MMP-9 and, to a lesser degree, by MMP-2. This proteolytic cleavage correlates with an increased migration of ECs. Accordingly, MMRN2 down-regulation is associated with an increased number of EC pseudopodia at the migrating front and this effect is attenuated using specific MMP-9 inhibitors. The down-modulation of MMRN2 occurs also in the context of tumor-associated angiogenesis. Immunofluorescence performed on tumor sections indicate a broad co-localization of MMP-9 and MMRN2, suggesting that the molecule may be extensively remodeled during tumor angiogenesis. Given the altered expression in tumors and the key role of MMRN2 in blood vessel function, we postulate that analyses of its expression may serve as a marker to predict the efficacy of the treatments. In conclusion, these data further support the role of MMRN2 as a key molecule regulating EC function and sprouting angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app