Add like
Add dislike
Add to saved papers

Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid.

An acid cleavable lipid (SA-3M) was synthesized and used to develop pH-responsive solid lipid nanoparticles (SLNs) to deliver vancomycin base (VM-FB) to acidic infection sites. The size, polydispersity index and zeta potential of VM-FB_SA-3M_SLNs were 132.9±9.1nm, 0.159±0.01 and -26±4.4mV respectively, with 57.80±1.1% encapsulation efficiency. VM-FB release was significantly faster at pH6.5 than pH7.4. In vitro antibacterial activity against methicillin-susceptible and resistant Staphylococcus aureus (MSSA and MRSA) revealed that SLNs had enhanced activity at pH6.5 than pH7.4. In vivo study showed that the amount of MRSA remaining in the skin of VM-FB_SA-3M_SLNs treated mice was approximately 22-fold lower than VM-FB treated mice. Histological investigations revealed that signs of inflammation in the skin treated with VM-FB_SA-3M_SLNs were minimal. In conclusion, this study confirmed that SA-3M can form pH-responsive SLNs capable of releasing antibiotic specifically at acidic infection sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app