Add like
Add dislike
Add to saved papers

Transcriptome analysis of the brain of the sea bream (Sparus aurata) after exposure to human pharmaceuticals at realistic environmental concentrations.

Human pharmaceuticals such as Acetaminophen, Atenolol and Carbamazepine are pseudo persistent aquatic pollutants with yet unknown sub-lethal effects at environmentally relevant concentrations. Gilthead seabream (Sparus aurata) were exposed to Acetaminophen: 31.90 ± 11.07 μg L(-1); Atenolol: 0.95 ± 0.38 μg L(-1) and Carbamazepine: 6.95 ± 0.13 μg L(-1) in a 28 day flow through experiment to (1) determine whether exposure to low concentrations in the μg·L(-1) range of the pharmaceuticals alters the brain transcriptome and, (2) identify different expression profiles and treatment specific modes of action and pathways. Despite low exposure concentrations, 411, 7 and 612 differently expressed transcripts were identified in the individual treatments with Acetaminophen, Atenolol and Carbamazepine, respectively. Functional analyses of differentially expressed genes revealed a significant over representation of several biological processes, cellular compartment features and molecular functions for both Acetaminophen and Carbamazepine treatments. Overall, the results obtained in seabream brain suggest similar physiological responses to those observed in humans also at environmental concentrations, as well as the existence of treatment specific processes that may be useful for the development of biomarkers of contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app