Add like
Add dislike
Add to saved papers

Degradation of triclosan and its main intermediates during the combined irradiation and biological treatment.

Triclosan is an extensively applied antimicrobial agent which has been frequently detected in the environment. In this paper, the degradation of triclosan and its main intermediates was investigated during the combined irradiation and biological treatment. The results showed that triclosan degradation increased with increase of absorbed dose, the removal efficiency of triclosan was 62%, 77%, 87%, 91% and 94%, respectively at 1, 2, 3, 4 and 5 kGy. The final removal efficiency of triclosan after the combined irradiation and biological process was 81%, 86%, 90%, 92% and 95%, respectively. During the irradiation process, two main intermediates, that is, 4,4'-2'-phenoxyphenol (Intermediate 1) and 4-chloro-2'-phenoxyphenol (Intermediate 2) were detected, in which Intermediate 1 dominated during the irradiation process. In the following biological treatment process, Intermediates 1 and 2 could be further degraded. In single biological treatment process, the final removal efficiency of triclosan was 54%, and Intermediates 1 and 2 were detected. Intermediate 1 could be biodegraded while Intermediate 2 could not. The concentration of Intermediate 2 increased during biological treatment process. In conclusion, irradiation as pre-treatment process can enhance the degradation of triclosan and improve the biodegradability of Intermediate 2. Combined irradiation and biological process can be promising for treating antibiotic-containing wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app