Add like
Add dislike
Add to saved papers

The sources of calcium for noradrenaline-induced contraction in the human thoracic internal artery.

The aim of the present study was to examine the contribution of intracellular and extracellular calcium sources in contraction caused by noradrenaline (NA) of the human internal thoracic artery (ITA) in vitro. Distal segments of ITA were obtained from 20 patients (aged 38-73, at the time of routine coronary artery surgical revascularization (CABG)). Contractile responses to 10-6  mol/L NA in the physiological salt solution and in Ca2+ -free solution without and after incubation with 10-6  mol/L thapsigargin (TSG) were recorded under isometric conditions. Responses of ITA rings to 1 μM NA without incubation with TSG accounted (% of reaction to 80 mM KCl) 224.70 ± 14.06% in PSS solution, 141.30 ± 8.66% in Ca2+ -free solution, and 80.03 ± 1.71% after PSS restoration and were statistically significantly different (p < 0.0001, one-way ANOVA). Responses of ITA rings to 1 μM NA with 1 μM TSG accounted (% of reaction to 80 mM KCl) 114.50 ± 2.79% in Ca2+ -free solution and 36.70 ± 2.38% after PSS restoration. Responses in Ca2+ -free solution and after PSS restoration without and with TSG were statistically significantly different (p = 0.0257 and p < 0.0001, respectively-t test). ITA contraction is caused by calcium derived not only from the SR and the extracellular matrix. The delivery of calcium to the space surrounding tissue does not immediately deliver calcium to the myofilaments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app