Add like
Add dislike
Add to saved papers

Modeling of retention and re-entrainment of mono- and poly-disperse particles: Effects of hydrodynamics, particle size and interplay of different-sized particles retention.

In this paper, numerical simulations of experimental data were performed with kinetic rate coefficients to characterize the retention and re-entrainment dynamics under different hydrodynamic conditions for monodisperse and polydisperse latex particles (3, 10, 16μm and the mixture). The results show that drastic increase in fluid velocity provokes hardly any remarkable decrease in retention in the presence of large energy barriers (>2000kT). Systematical increases in deposition and re-entrainment dynamic rates were observed with fluid velocity and/or particle size. Increased irreversible deposition rate indicates straining and wedging dominate deposition in this study. Excess retention of 3μm particle in the polydisperse particle suspension was observed. The origins are reckoned that deposited larger particles may hinder the re-entrainment of smaller particles near the grain-to-grain contact and can provide additional sites of attachment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app