JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Distinguishing septic from normal donors by detection of sPLA2-IIA from human plasma using a microsieve-based immunoassay.

Bloodstream infections that progress to septic shock are responsible for hundreds of thousands of deaths each year, and are associated with significant healthcare costs. Recent studies have shown that a member of the secreted phospholipase protein family, termed sPLA2-IIA, may play a role during the innate immune response to bacterial infections, and is elevated in the plasma of septic patients. In this report, the feasibility of a simple microsieve-based sPLA2-IIA detection immunoassay was explored. Microsieves containing 5μm pores were covalently coupled with a sPLA2-IIA-specific monoclonal antibody at 0.1, 1.0, and 10μg/mL and then assayed with plasma-based positive and negative controls to determine the optimal coating concentration. Recombinant sPLA2-IIA was then serially diluted to a final concentration of 200, 100, 50, 25, 12.5, and 6.25ng/mL and tested alongside a non-spiked sample to estimate the detection limit of the prototype assay. Recombinant sPLA2-IIA was also spiked into serum, EDTA-plasma, and Lithium-Heparin plasma, in an effort to evaluate assay performance when analyzing these sample matrices. The preliminary limit of detection studies suggests that the microsieve assay is able to distinguish approximately 6-12ng/mL of sPLA2-IIA from a non-spiked sample. When compared to an immunoassay diluent, the microsieve assay also yielded acceptable percent recoveries for each of the three sample matrices spiked with clinically significant levels of sPLA2-IIA. The sPLA2-IIA microsieve assay prototype also clearly distinguished five samples from septic patients from five normal donor samples, and the results were in good agreement with a comparator ELISA test system (R2 =0.9347).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app