JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Freeform extrusion fabrication of titanium fiber reinforced 13-93 bioactive glass scaffolds.

Although implants made with bioactive glass have shown promising results for bone repair, their application in repairing load-bearing long bone is limited due to their poor mechanical properties in comparison to human bone. This work investigates the freeform extrusion fabrication of bioactive silicate 13-93 glass scaffolds reinforced with titanium (Ti) fibers. A composite paste prepared with 13-93 glass and Ti fibers (~16µm in diameter and lengths varying from ~200µm to ~2 mm) was extruded through a nozzle to fabricate scaffolds (0-90° filament orientation pattern) on a heated plate. The sintered scaffolds measured pore sizes ranging from 400 to 800µm and a porosity of ~50%. Scaffolds with 0.4vol% Ti fibers measured fracture toughness of ~0.8MPam1/2 and a flexural strength of ~15MPa. 13-93 glass scaffolds without Ti fibers had a toughness of ~0.5MPam1/2 and a strength of ~10MPa. The addition of Ti fibers increased the fracture toughness of the scaffolds by ~70% and flexural strength by ~40%. The scaffolds' biocompatibility and their degradation in mechanical properties in vitro were assessed by immersing the scaffolds in a simulated body fluid over a period of one to four weeks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app