Add like
Add dislike
Add to saved papers

Plackett-Burman Design and Response Surface Optimization of Medium Trace Nutrients for Glycolipopeptide Biosurfactant Production

Background: A glycolipopeptide biosurfactant produced by Pseudomonas aeruginosa strain IKW1 reduced the surface tension of fermentation broth from 71.31 to 24.62 dynes/cm at a critical micelle concentration of 20.80 mg/L. The compound proved suitable for applications in emulsion stabilization in food, as well as in cosmetic and pharmaceutical formulations.

Method: In the present study, Plackett-Burman design (PBD) and response surface method (RSM) were employed to screen and optimize concentrations of trace nutrients in the fermentation medium, to increase surfactant yield.

Results: The PBD selected 5 out of the 12 screened significant trace nutrients. The RSM, on the other hand, resulted in the production of 84.44 g glycolipopeptide/L in the optimized medium containing 1.25 mg/L nickel, 0.125 mg/L zinc, 0.075 mg/L iron, 0.0104 mg/L boron, and 0.025 mg/L copper.

Conclusion: Significant second-order quadratic models for biomass (P<0.05; adjusted R2=94.29%) and biosurfactant (R2=99.44%) responses suggest excellent goodness-of-fit of the models. However, their respective non-significant lack-of-fit (Biomass: F=1.28; P=0.418; Biosurfactant: F=1.20; P=0.446) test results indicate their adequacy to explain data variations in the experimental region. The glycolipopeptide is recommended for the formulation of inexpensive pharmaceutical products that require surface-active compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app