Add like
Add dislike
Add to saved papers

Targeting on poly(ADP-ribose) polymerase activity with DNA-damaging hybrid lactam-steroid alkylators in wild-type and BRCA1-mutated ovarian cancer cells.

Conjugated lactam-steroid alkylators (LSA) have been shown to exhibit superior activity at controlling cancer models and overlap drug resistance to conventional chemjournalapy. Hybrid LSA combine two active compounds in a single molecule and incorporate modified steroids bearing lactam moiety in one or more steroid rings functioning as vectors for cytotoxic agents. We first describe a novel class of LSA that generate excellent anticancer activity against UWB1.289 and UWB1.289 + BRCA1 human ovarian cancer cell lines. Both UWB1.289 and UWB1.289 + BRCA1 cells carry mutations in the tumor suppressor gene TP53 while UWB1.289 cell line carries a germline BRCA1 mutation. In vitro, in vivo, and in silico, experimental methods were utilized to determine the poly(ADP-ribose) polymerases (PARPs) activity and mRNA transcription, DNA damage, cytostatic and cytotoxic effects, and virtual molecular interactions, in order to study the molecular mechanisms of activity of the tested LSA. LSA produce anticancer activity through dual action by combining the direct induction of cellular DNA damage with the inhibition of PARP activity and consecutive DNA repair activity. BRCA1-mutated UWB1.289 ovarian cancer cells with defective PARP-oriented repair mechanism show significantly higher sensitivity to these agents. Combined drug effect on DNA damage and repair is a novel approach in cancer therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app