Add like
Add dislike
Add to saved papers

Mechanism of the vasorelaxant effect induced by trans-4-methyl-β-nitrostyrene, a synthetic nitroderivative, in rat thoracic aorta.

Mechanisms underlying the vasorelaxant effects of trans-4-methyl-β-nitrostyrene (T4MeN) were studied in rat aortic rings. In endothelium-intact preparations, T4MeN fully and similarly relaxed contractions induced by phenylephrine (PHE) (IC50  = 61.41 [35.40-87.42] μmol/L) and KCl (IC50  = 83.50 [56.63-110.50] μmol/L). The vasorelaxant effect of T4MeN was unchanged by endothelium removal, pretreatment with L-NAME, indomethacin, tetraethylammonium, ODQ or MDL-12,330A. Under Ca2+ -free conditions, T4MeN significantly reduced with a similar potency: (i) phasic contractions induced by PHE, but not by caffeine; (ii) contractions due to CaCl2 in aortic preparations stimulated with PHE (in the presence of verapamil) or high KCl; (iii) contractions evoked by the restoration of external Ca2+ levels after depletion of intracellular Ca2+ stores in the presence of thapsigargin. In contrast, T4MeN was more potent at inhibiting contractions evoked by the tyrosine phosphatase inhibitor, sodium orthovanadate, than those induced by the activator of PKC, phorbol-12,13-dibutyrate. These results suggest that T4MeN induces an endothelium- independent vasorelaxation that appears to occur intracellularly through the inhibition of contractions that are independent of Ca2+ influx from the extracellular milieu but involve phosphorylation of tyrosine residues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app