Add like
Add dislike
Add to saved papers

FPGASW: Accelerating Large-Scale Smith-Waterman Sequence Alignment Application with Backtracking on FPGA Linear Systolic Array.

The Smith-Waterman (SW) algorithm based on dynamic programming is a well-known classical method for high precision sequence matching and has become the gold standard to evaluate sequence alignment software. In this paper, we propose fine-grained parallelized SW algorithms using affine gap penalty and implement a parallel computing structures to accelerating the SW with backtracking on FPGA platform. We analysis the dynamic parallel computing features of anti-diagonal elements and storage expansion problem resulting from backtracking stage, and propose a series of optimization strategies to eliminate data dependency, reduce storage requirements, and overlap memory access latency. Our implementation is capable of supporting multi-type, large-scale biological sequence alignment applications. We obtain a speedup between 3.6 and 25.2 over the typical SW algorithm running on a general-purpose computer configured with an Intel Core i5 3.2 GHz CPU. Moreover, our work is superior to other FPGA implementations in both array size and clock frequency, and the experiment results show that it can get a performance closed to that of the latest GPU implementation, but the power consumption is only about 26% of that of the GPU platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app