Add like
Add dislike
Add to saved papers

Estradiol mitigates ischemia reperfusion-induced acute renal failure through NMDA receptor antagonism in rats.

In the present study, we investigated possible involvement of N-methyl-D-aspartate receptors (NMDAR) in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute renal failure (ARF) in rats. Bilateral renal ischemia of 40 min followed by reperfusion for 24 h induced ARF in male wistar rats. Quantification of serum creatinine, creatinine clearance (CrCl), blood urea nitrogen (BUN), uric acid, potassium, fractional excretion of sodium (FeNa ), and urinary microproteins was done to assess I/R-induced renal damage in rats. Oxidative stress in kidneys was measured in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin & eosin and periodic acid Schiff stains were used to reveal structural changes in renal tissues. Estradiol benzoate (0.5 and 1.0 mg/kg, intraperitoneally, i.p.) was administered 1 h prior to I/R in rats. In separate groups, rats were treated with NMDAR agonists, glutamic acid (200 mg/kg, i.p.), and spermidine (20 mg/kg, i.p.) before administration of estradiol. Marked increase in serum creatinine, BUN, uric acid, serum potassium, FeNa , microproteinuria, and reduction in CrCl demonstrated I/R-induced ARF in rats. Treatment with estradiol mitigated I/R-induced changes in serum/urine parameters. Moreover, estrogen attenuated oxidative stress and structural changes in renal tissues. Prior administration of glutamic acid and spermidine abolished estradiol mediated renoprotection in rats. These results indicate the involvement of NMDAR in estradiol mediated renoprotective effect. In conclusion, we suggest that NMDAR antagonism serves as one of the mechanisms in estradiol-mediated protection against I/R-induced ARF in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app