JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Calpain inhibition prevents flotillin re-ordering and Src family activation during capacitation.

Prior to fertilization, mammalian sperm undergo several molecular, biochemical and physiological changes in a process termed capacitation. However, the mechanisms explaining the involvement of cytoskeletal remodeling and membrane re-ordering in each process prior to fertilization remain poorly understood. We found that the migration of both flotillin microdomains and Src family kinases towards the apical ridge of guinea pig sperm occurs under capacitating conditions. This re-ordering is associated with spectrin cleavage by calpain. Moreover, Src, Fyn, Lyn and Hck interact with flotillin-1; this interaction increases in a capacitation-dependent manner and the increased autophosphorylation of these kinases is linked to flotillin-1 association. The aforementioned results are prevented by the inhibition of calpain by calpeptin. Thus, spectrin cytoskeleton cleavage during capacitation seems to precede the reorganization of flotillin microdomains and Src family kinases towards the apical ridge of the sperm head in order to initiate the signaling cascade required for proper capacitation and further acrosome reaction. The significance of the Src family kinase reorganization for capacitation is demonstrated by the inhibition of calpain during capacitation also preventing the Src-family-kinase-dependent phosphorylation of FAK at Tyr576/577. Our work further highlights the scaffolding properties of flotillin microdomains and reveals the importance of their large-scale segregation during capacitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app