Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Toward a direct and scalable identification of reduced models for categorical processes.

The applicability of many computational approaches is dwelling on the identification of reduced models defined on a small set of collective variables (colvars). A methodology for scalable probability-preserving identification of reduced models and colvars directly from the data is derived-not relying on the availability of the full relation matrices at any stage of the resulting algorithm, allowing for a robust quantification of reduced model uncertainty and allowing us to impose a priori available physical information. We show two applications of the methodology: ( i ) to obtain a reduced dynamical model for a polypeptide dynamics in water and ( ii ) to identify diagnostic rules from a standard breast cancer dataset. For the first example, we show that the obtained reduced dynamical model can reproduce the full statistics of spatial molecular configurations-opening possibilities for a robust dimension and model reduction in molecular dynamics. For the breast cancer data, this methodology identifies a very simple diagnostics rule-free of any tuning parameters and exhibiting the same performance quality as the state of the art machine-learning applications with multiple tuning parameters reported for this problem.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app