Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation.

BACKGROUND: The wide application of engineered nanoparticles has induced increasing exposure to humans and environment, which led to substantial concerns on their biosafety. Some metal oxides (MOx) have shown severe toxicity in cells and animals, thus safe designs of MOx with reduced hazard potential are desired. Currently, there is a lack of a simple yet effective safe design approach for the toxic MOx. In this study, we determined the key physicochemical properties of MOx that lead to cytotoxicity and explored a safe design approach for toxic MOx by modifying their hazard properties.

RESULTS: THP-1 and BEAS-2B cells were exposed to 0-200 μg/mL MOx for 24 h, we found some toxic MOx including CoO, CuO, Ni2 O3 and Co3 O4 , could induce reactive oxygen species (ROS) generation and cell death due to the toxic ion shedding and/or oxidative stress generation from the active surface of MOx internalized into lysosomes. We thus hypothesized that surface passivation could reduce or eliminate the toxicity of MOx. We experimented with a series of surface coating molecules and discovered that ethylenediamine tetra (methylene phosphonic acid) (EDTMP) could form stable hexadentate coordination with MOx. The coating layer can effectively reduce the surface activity of MOx with 85-99% decrease of oxidative potential, and 65-98% decrease of ion shedding. The EDTMP coated MOx show negligible ROS generation and cell death in THP-1 and BEAS-2B cells. The protective effect of EDTMP coating was further validated in mouse lungs exposed to 2 mg/kg MOx by oropharyngeal aspiration. After 40 h exposure, EDTMP coated MOx show significant decreases of neutrophil counts, lactate dehydrogenase (LDH) release, MCP-1, LIX and IL-6 in bronchoalveolar lavage fluid (BALF), compared to uncoated particles. The haematoxylin and eosin (H&E) staining results of lung tissue also show EDTMP coating could significantly reduce the pulmonary inflammation of MOx.

CONCLUSIONS: The surface reactivity of MOx including ion shedding and oxidative potential is the dominated physicochemical property that is responsible for the cytotoxicity induced by MOx. EDTMP coating could passivate the surface of MOx, reduce their cytotoxicity and pulmonary hazard effects. This coating would be an effective safe design approach for a broad spectrum of toxic MOx, which will facilitate the safe use of MOx in commercial nanoproducts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app