Add like
Add dislike
Add to saved papers

Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate.

Molecular Cell 2017 April 21
According to the N-end rule, the N-terminal residue of a protein determines its stability. In bacteria, the adaptor ClpS mediates proteolysis by delivering substrates bearing specific N-terminal residues to the protease ClpAP. We now report that the Salmonella adaptor ClpS binds to the N terminus of the regulatory protein PhoP, resulting in PhoP degradation by ClpAP. We establish that the PhoP-activated protein MgtC protects PhoP from degradation by outcompeting ClpS for binding to PhoP. MgtC appears to act exclusively on PhoP, as it did not alter the stability of a different ClpS-dependent ClpAP substrate. Removal of five N-terminal residues rendered PhoP stability independent of both the clpS and mgtC genes. By preserving PhoP protein levels, MgtC enables normal temporal transcription of PhoP-activated genes. The identified mechanism provides a simple means to spare specific substrates from an adaptor-dependent protease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app