Add like
Add dislike
Add to saved papers

SPA-LN: a scoring function of ligand-nucleic acid interactions via optimizing both specificity and affinity.

Nucleic acids have been widely recognized as potential targets in drug discovery and aptamer selection. Quantifying the interactions between small molecules and nucleic acids is critical to discover lead compounds and design novel aptamers. Scoring function is normally employed to quantify the interactions in structure-based virtual screening. However, the predictive power of nucleic acid-ligand scoring functions is still a challenge compared to other types of biomolecular recognition. With the rapid growth of experimentally determined nucleic acid-ligand complex structures, in this work, we develop a knowledge-based scoring function of nucleic acid-ligand interactions, namely SPA-LN. SPA-LN is optimized by maximizing both the affinity and specificity of native complex structures. The development strategy is different from those of previous nucleic acid-ligand scoring functions which focus on the affinity only in the optimization. The native conformation is stabilized while non-native conformations are destabilized by our optimization, making the funnel-like binding energy landscape more biased toward the native state. The performance of SPA-LN validates the development strategy and provides a relatively more accurate way to score the nucleic acid-ligand interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app