Add like
Add dislike
Add to saved papers

Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO 2 .

Bioengineered 2018 January 2
Photoautotrophic cyanobacteria have been developed to convert CO2 to valuable chemicals and fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial metabolism allowed for an enhancement in the level of target products by redirecting the carbon fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app