Add like
Add dislike
Add to saved papers

Small Particle Driven Chain Disentanglements in Polymer Nanocomposites.

Using neutron spin-echo spectroscopy, x-ray photon correlation spectroscopy, and bulk rheology, we studied the effect of particle size on the single-chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The results reveal a ≈25% increase in the reptation tube diameter with the addition of nanoparticles smaller than the entanglement mesh size (≈5  nm), at a volume fraction of 20%. The tube diameter remains unchanged in the composite with larger (20 nm) nanoparticles at the same loading. In both cases, the Rouse dynamics is insensitive to particle size. These results provide a direct experimental observation of particle-size-driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app