Add like
Add dislike
Add to saved papers

Topological Exciton Bands in Moiré Heterojunctions.

Moiré patterns are common in van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. We show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moiré patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with nonzero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: (i) the valley Berry phase induced by electron-hole exchange interactions, (ii) the moiré potential, and (iii) the valley Zeeman field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app