Add like
Add dislike
Add to saved papers

Quantifying the Dynamical Complexity of Chaotic Time Series.

A powerful approach is proposed for the characterization of chaotic signals. It is based on the combined use of two classes of indicators: (i) the probability of suitable symbolic sequences (obtained from the ordinal patterns of the corresponding time series); (ii) the width of the corresponding cylinder sets. This way, much information can be extracted and used to quantify the complexity of a given signal. As an example of the potentiality of the method, I introduce a modified permutation entropy which allows for quantitative estimates of the Kolmogorov-Sinai entropy in hyperchaotic models, where other methods would be unpractical. As a by-product, estimates of the fractal dimension of the underlying attractors are possible as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app