Add like
Add dislike
Add to saved papers

Demystifying Complex Quantum Dot Heterostructures Using Photogenerated Charge Carriers.

The success of heterostructure quantum dots in optoelectronic and photovoltaic applications is based on our understanding of photogenerated charge carrier localization. However, often the actual location of charge carriers in heterostructure semiconductors is quite different from their predicted positions leading to suboptimal results. In this work, photoluminescence of Cu doped heterostructures has been used to study the charge localization of alloys, inverse type I, type II, and quasi type II core/shell structures and graded alloys. Specifically, the adeptness of this method has been assessed over a range of widely studied heterostructures like CdSe/CdS, CdS/CdSe, CdSe/CdTe, Zn1-x Cdx Se and Zn1-x Cdx S quantum dots systems by doping them with a small percentage of Cu. The electron and hole localization obtained from this method concurs with the pre-existing understanding in cases that have been explored before, while the internal structure of previously unknown heterostructures have been predicted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app