Add like
Add dislike
Add to saved papers

Gauging Donor/Acceptor Properties and Redox Stability of Chelating Click-Derived Triazoles and Triazolylidenes: A Case Study with Rhenium(I) Complexes.

Bidentate ligands containing at least one triazole or triazolylidene (mesoionic carbene, MIC) unit are extremely popular in contemporary chemistry. One reason for their popularity is the similarities as well as differences in the donor/acceptor properties that these ligands display in comparison to their pyridine or other N-heterocyclic carbene counterparts. We present here seven rhenium(I) carbonyl complexes where the bidentate ligands contain combinations of pyridine/triazole/triazolylidene. These are the first examples of rhenium(I) complexes with bidentate 1,2,3-triazol-5-ylidene-containing ligands. All complexes were structurally characterized through1 H and13 C NMR spectroscopy as well as through single-crystal X-ray diffraction. A combination of structural data, redox potentials from cyclic voltammetry, and IR data related to the CO coligands are used to gauge the donor/acceptor properties of these chelating ligands. Additionally, a combination of UV-vis-near-IR/IR/electron paramagnetic resonance spectroelectrochemistry and density functional theory calculations are used to address questions related to the electronic structures of the complexes in various redox states, their redox stability, and the understanding of chemical reactivity following electron transfer in these systems. The results show that donor/acceptor properties in these bidentate ligands are sometimes, but not always, additive with respect to the individual components. Additionally, these results point to the fact that MIC-containing ligands confer remarkable redox stability to their fac-Re(CO)3 -containing metal complexes. These findings will probably be useful for fields such as homogeneous- and electro-catalysis, photochemistry, and electrochemistry, where fac-Re(CO)3 complexes of triazoles/triazolylidenes are likely to find use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app