Add like
Add dislike
Add to saved papers

Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network.

Applied Optics 2017 April 21
In this study, for the first time to the best of our knowledge, a combination of the laser-induced breakdown spectroscopy (LIBS) technique and artificial neural network (ANN) analysis has been implemented for the identification of energetic materials, including TNT, RDX, black powder, and propellant. Also, aluminum, copper, inconel, and graphite have been used for more accurate investigation and comparison. After the LIBS test and spectrum acquisition on all samples in both air and argon ambient, optimized neural networks were designed by LIBS data. Based on input data, three ANN algorithms are proposed: the first is fed with the whole LIBS spectra in air (ANN1) and the second with the principle component analysis (PCA) scores of each spectrum in air (ANN2) and the other with the PCA scores of the spectrum in Ar (ANN3). According to the results, error of the network is very low in ANN2 and 3 and the best identification and discrimination was obtained by ANN3. After these, in order to validate and for more investigation of this combined method, we also used Al/RDX standard samples for analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app