Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Layer Polarizability and Easy-Axis Quantum Hall Ferromagnetism in Bilayer Graphene.

Nano Letters 2017 June 15
We report magnetotransport measurements of graphene bilayers at large perpendicular electric displacement fields, up to ∼1.5 V/nm, where we observe crossings between Landau levels with different orbital quantum numbers. The displacement fields at the studied crossings are primarily determined by energy shifts originating from the Landau level layer polarizability or polarization. Despite decreasing Landau level spacing with energy, successive crossings occur at larger displacement fields, resulting from decreasing polarizability with orbital quantum number. For particular crossings we observe resistivity hysteresis in displacement field, indicating the presence of a first-order transition between states exhibiting easy-axis quantum Hall ferromagnetism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app